Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Мелешко Людмила Федеральное государственное бюджетное образовательное учреждение высшего образования

Должность: Заместитель директора по учебной работе

Дата подписания: 08.11.202 «Далыневосточный государственный университет путей сообщения» (ДВГУПС)

Уникальный программный ключ:

7f8c45cd3b5599e575ef49afdc475b4579d2cf61

Приморский институт железнодорожного транспорта – филиал федерального государственного бюджетного образовательного учреждения высшего образования «Дальневосточный государственный университет путей сообщения» в г. Уссурийске

(ПримИЖТ – филиал ДВГУПС в г. Уссурийске)

УТВЕРЖДАЮ

Зам. директора по УР

ПримИЖТ – филиала ДВГУПС в

г. Уссурийске

___ Мелешко Л.А.

01.06.2023 г.

РАБОЧАЯ ПРОГРАММА

Высшая математика

для специальности 38.05.01. Экономическая безопасность

специализация: Экономико-правовое обеспечение экономической безопасности

Составитель: к.п.н., доцент, Квашко Л.П.

Обсуждена на предметно-методической комиссии ФВО

Протокол № 05 от 11.05.2023

Обсуждена на заседании методической комиссии ПримИЖТ

Протокол № 07 от 07.06.2023

Рабочая программа дисциплины Математика

разработана в соответствии с $\Phi\Gamma$ OC, утвержденным приказом Министерства образования и науки Российской Федерации от 14.04.2021 № 293

Квалификация Экономист

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля в семестрах:

в том числе: экзамены (семестр)

 контактная работа
 52

 самостоятельная работа
 56

 часов на контроль
 36

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	1 (1.1)		Итого
Недель	17	1/6		
Вид занятий	УП	РΠ	УП	РП
Лекции	16	16	16	16
Практические	32	32	32	32
Контроль самостоятельной работы	4	4	4	4
В том числе инт.	24	24	24	24
Итого ауд.	48	48	48	48
Контактная работа	52	52	52	52
Сам. работа	56	56	56	56
Часы на контроль	36	36	36	36
Итого	144	144	144	144

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Линейная алгебра и аналитическая геометрия. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Интегральное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких переменных. Числовые и функциональные ряды. Кратные, криволинейные и поверхностные интегралы. Векторный анализ и элементы теории поля. Дифференциальные уравнения. Теория вероятностей и математическая статистика.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Код дис	циплины: Б1.О.04
2.1	Требования к предварительной подготовке обучающегося:
2.1.1	Знание школьного курса математики
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1	Инженерная компьютерная графика
2.2.2	Физика
2.2.3	Химия
2.2.4	Теоретическая механика
2.2.5	Вычислительная техника и математическое моделирование
2.2.6	Сопротивление материалов
2.2.7	Инженерная и компьютерная графика на железнодорожном транспорте
2.2.8	Инженерная и компьютерная графика
2.2.9	Математическое моделирование

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен использовать знания и методы экономической науки, применять статистико-математический инструментарий, строить экономико-математические модели, необходимые для решения профессиональных задач, анализировать и интерпретировать полученные результаты.

Знать:

Основные базовые понятия и методы математи-ческого анализа, аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления, гармонического анализа, основы теории вероятностей, математической статистики, дискретной математики

Уметь:

Классификацию основных понятий и методов математического анализа, аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления, гармонического анализа, основы теории вероятностей, математической статистики, дискретной математики, необходимых для решения простейших учебных задач

Владеть:

Методами математического описания физических явлений и процессов, определяющих принципы работы элементарных технических устройств

ОПК-3: Способен рассчитывать экономические показатели, характеризующие деятельность хозяйствующих субъектов.

Знать:

Основные принципы формирова-ния экономической информации; классификацию аналитических показателей; методики расчета экономических показателей, ха-рактеризующих финансово-хозяйственную деятельность ор-ганизации.

Уметь:

Классифицировать, систематизиро-вать экономическую информацию для ее подготовки к аналитической работе.

Владеть:

Навыками расчета экономических показателей организации; навыка-ми использования методики ком-плексного анализа основных пока-зателей хозяйственной деятельно-сти организаций различных форм собственностей.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Линейная алгебра и аналитическая геометрия						

1.1	Лк1. Линейная алгебра. Матрицы. Действия над матрицами, их свойства. Матричные уравнения. Обратная матрица. Определители 2-го и 3-го порядков. Миноры и алгебраические дополнения. Теорема Лапласа. /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.5Л3.4 Э1	2	Активное слушание
1.2	Пр1. Действия над матрицами, их свойства. Ранг матрицы. Обратная матрица. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.5Л3.4 Э1	2	Работа в группах
1.3	Пр3. Решение СЛАУ матричным методом. Методом Крамера. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.5Л3.4 Э1	2	Работа в группах
1.4	Лк3.Прямая линия на плоскости: различные виды уравнений прямой. Расстояние от точки до прямой. /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.6Л3.4 Э1	2	Активное слушание
1.5	Прб. Прямая линия на плоскости: различные виды уравнений прямой. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.6Л3.4 Э1	2	Активное слушание
1.6	Пр7. Окружность, эллипс. Канонические уравнения, построение. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.6Л3.4 Э1	2	Активное слушание
	Раздел 2. Введение в математический анализ						
2.1	Лк7.Предел функции в точке и на бесконечности. Свойства пределов. Бесконечно малые и бесконечно большие функции. Первый и второй замечательные пределы. Эквивалентные функции. /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	2	активное слушание
2.2	Пр12.Область определения и свойства функций. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
2.3	Пр13. Вычисление пределов (раскрытие неопределенностей) /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
2.4	Лк8. Непрерывность функции в точке и на множестве. Свойства непрерывных функций. Односторонняя непрерывность. Точки разрыва, их классификация. Свойства функций, непрерывных на отрезке /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	2	Разбор конкретных примеров
2.5	Пр16.Точки разрыва, их классификация. Свойства функций, непрерывных на отрезке /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 3. Дифференциальное исчисление функции одной переменной						
3.1	Л1. Производная функции, ее свойства. Производные элементарных функций. Производная сложной, обратной, неявной, параметрически заданной функций. Логарифмическое дифференцирование. Дифференциал функции. /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
3.2	Пр1.Вычисление производной элементарных функций /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	

3.3	Л2. Раскрытие неопределенностей (правила Лопиталя). Приближенные вычисления с помощью дифференциала. Монотонность функции. Точки экстремума. Выпуклость функции. Точки перегиба. Асимптоты функции. Наибольшее и наименьшее значения функции на отрезке. /Лек/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
3.4	Пр4.Исследование функций на монотонность. Исследование функций на выпуклость-вогнутость, определение асимптот, наибольшего и наименьшего значения функции на отрезке. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 4. Интегральное исчисление функции одной переменной						
4.1	Пр5. Вычисление неопределённого интеграла с применением таблицы интегралов /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.2	Пр6. Вычисление интеграла заменой переменной и по частям /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.1 Л2.2 Л2.3Л3.1	0	
	Раздел 5. Дифференциальные уравнения						
5.1	Пр13. Решение уравнений первого порядка /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.7Л3.2 Э1	2	Работа в группах
5.2	Пр16.Решение ДУ второго порядка с постоянными коэффициентами. /Пр/	1	2	ОПК-1 ОПК -3	Л1.2Л2.7Л3.2 Э1	2	Работа в группах
	Раздел 6. Теория вероятностей						
6.1	Пр1. Решение задач на вычисление вероятности случайных событий. Решение комбинаторных задач и их применение к вычислению вероятностей /Пр/	1	2	ОПК-1 ОПК -3	Л1.1Л2.4 Л2.7Л3.3 Л3.4 Э2	2	Работа в группах
6.2	Пр2. Решение задач на вычисление полной вероятности и вероятности гипотез. /Пр/	1	2	ОПК-1 ОПК -3	Л1.1Л2.4 Л2.7Л3.3 Л3.4 Э2	2	Работа в группах
	Раздел 7. Статистические методы обработки экспериментальных данных						
7.1	Прб.Решение задач на вычисление функции распределения. Построение гистограмм и полигона частот. /Пр/	1	2	ОПК-1 ОПК -3	Л1.1Л2.4 Л2.7Л3.3 Л3.4 Э2	0	
7.2	Л7.Точечные и интервальные оценки параметров распределения. /Лек/	1	2	ОПК-1 ОПК -3	Л1.1Л2.4 Л2.7Л3.3 Л3.4 Э2	0	
	Раздел 8. Статистическое оценивание и проверка гипотез						
8.1	Л8.Статистическое оценивание и проверка гипотез о виде распределения. Критерий согласия Пирсона. /Лек/	1	2	ОПК-1 ОПК -3	Л1.1Л2.4 Л2.7Л3.3 Л3.4 Э2	0	
	Раздел 9. Самостоятельная работа						
	*						

9.1	Подготовка к лекциям и практическим занятиям /Ср/	1	32	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.3 Л3.4 Э1 Э2	
9.2	Выполнение домашних заданий /Ср/	1	24	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.3 Л3.4 Э1 Э2	
	Раздел 10. Контроль				
10.1	Экзамен /Экзамен/	1	36	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.3 Л3.4 Э1 Э2	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

		ІЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИО 6.1. Рекомендуемая литература	
	6.1.1. Перечен	ь основной литературы, необходимой для освоения дисци	плины (модуля)
	Авторы, составители	Заглавие	Издательство, год
Л1.1	Колемаев В. А., Калинина В. Н.	Теория вероятностей и математическая статистика	Москва: Юнити-Дана, 2015, http://biblioclub.ru/index.php? page=book&id=436721
Л1.2	Н.Ш. Кремер	Высшая математика для экономистов	Москва: Юнити-Дана, 2015, http://biblioclub.ru/index.php? page=book&id=114541
	6.1.2. Перечень до	полнительной литературы, необходимой для освоения ди	сциплины (модуля)
	Авторы, составители	Заглавие	Издательство, год
Л2.1	Виноградова П.В., Королева Т.Э.	Интегральное исчисление функции одной переменной: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2014,
Л2.2	Виноградова П.В., Королева Т.Э.	Математический анализ: интегралы: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2015,
Л2.3	Виноградова, Королёва П.В., Т.Э.	Математический анализ: Учебное пособие	Хабаровск: Изд-во ДВГУПС, 2015,
Л2.4	Калинина В.Н.	Теория вероятностей и математическая статистика	Москва: "Издательство Юрайт", 2016,
Л2.5	Квашко Л.П.	Основы линейной алгебры: учеб. пособие	Хабаровск: Издательство ДВГУПС, 2012,
Л2.6	Квашко Л.П.	Основы векторной алгебры и аналитической геометрии на плоскости: учеб. пособие	Хабаровск: Изд-во ДВГУПС, 2020,
Л2.7	Квашко Л.П.	Обыкновенные дифференциальные уравнения и способы их решения: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2021,
6.1	3. Перечень учебно-ме	тодического обеспечения для самостоятельной работы об (модулю)	учающихся по дисциплине
	Авторы, составители	Заглавие	Издательство, год
Л3.1	Якунина М.И., Гамалей В.Г.	Дифференциальное исчисление функций одной переменной: метод. пособие	Хабаровск: Изд-во ДВГУПС, 2011,
Л3.2	Гамоля Л.Н., Ющенко Н.Л.	Дифференциальные уравнения: метод. пособие по выполнению расчетно-графической работы	Хабаровск: Изд-во ДВГУПС, 2014,
Л3.3	Городилова М.А., Ушакова Г.А.	Теория вероятностей и математическая статистика: метод. пособие по выполнению контрольных работ	Хабаровск: Изд-во ДВГУПС, 2016,
Л3.4	Виноградова П.В., Ющенко Н.Л.	Основы высшей математики: линейная алгебра и аналитическая геометрия: сб. задач	Хабаровск: Изд-во ДВГУПС, 2019,

6.2.	Перечень ресурсов информационно-телекоммуникационной сети "Интернет", в дисциплины (модуля)	еобходимых для освоения
Э1	Кузнецов, Б.Т. Математика: учебник / Б.Т. Кузнецов 2-е изд., перераб. и доп М. : Юнити-Дана, 2015 719 с.: ил., табл., граф (Высшее профессиональное образование: Экономика и управление) Библиогр. в кн ISBN 5-238-00754-Х; То же [Электронный ресурс]	page=book&id=114717
Э2		//biblioclub.ru/index.php? page=book&id=436721

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Windows XP - Операционная система, лиц. 46107380

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Гарант

7. ОПІ		ОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ СССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)
Аудитория	Назначение	Оснащение
Аудитория № 814 Кабинет теории	Учебная аудитория для проведения занятий лекционного типа, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы	Программное обеспечение: Містоsoft Windows XP (Сведения об Open License 44290841) Містоsoft Office Professional Plus 2007 (Сведения об Open License 66234276); Казрегѕку Endpoint Security 8 (№ лицензии 1356-160615-113525-730-94); Foxit Reader . Доска аудиторная; компьютер Intel(R) Core(TM) i3-3210 CPU @ 3.20GHz/2GB/ 500Gb/DVD-RW/Монитор Acer 19. Интерактивная доска HITACHI FX-TRIO-77-E; проектор Nec V300X.;стенд балан-сировочный; макеты зубчатых передач; редукторы (разл.типов).

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

С целью эффективной организации учебного процесса учащимся в начале семестра предоставляется учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны, в соответствии с планом выполнения самостоятельных работ (табл. приложения), изучать теоретический материал по предстоящему занятию и формулировать вопросы, вызывающие у них затруднения для рассмотрения на лекционном или практическом занятии.

Для рационального распределения времени обучающегося по разделам дисциплины и по видам самостоятельной работы студентам предоставляется план лекций и практических занятий по дисциплине, а также учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны усвоить научные основы предстоящей деятельности, научиться управлять развитием своего мышления. С этой целью они должны освоить различные алгоритмы мышления. Алгоритмы развития мышления выстраиваются так, чтобы знания (закон, закономерность, определение, вывод, правило и т. д.) могли применяться при выполнении заданий (решении задач).

Выделяют следующие способы построения алгоритма:

- а) из одного понятия:
- выделить существенные признаки понятия,
- определить взаимосвязь признаков между собой,
- установить последовательность наложения признаков на конкретный пример;
- б) при комбинировании нескольких понятий:
- построить алгоритмы применения каждого понятия,
- сравнить алгоритмы (выделить общие и специфические признаки),
- определить взаимосвязь признаков между собой,
- установить последовательность наложения признаков на конкретный при-мер.

Алгоритм проведения анализа:

- 1) выделить в понятии все признаки предмета или явления (физические, химические свойства и отношения);
- 2) определить существенные признаки;
- 3) выделить несущественные признаки.

Алгоритм проведения синтеза:

1) определить все признаки, характеризующие предмет или явление;

смысл;

- 2) выделить из них существенные, принадлежащие предмету или явлению, без которых последнее теряет свой
- 3) соотнести имеющиеся признаки с признаками известных понятий или ввести новое понятие.

Алгоритм проведения сравнения (сравнительный анализ предполагает проведение анализа каждого понятия и сравнения их между собой):

- 1) провести анализ сравниваемых понятий:
- выделить в понятии все признаки предмета или явления (физические, химические свойства и отношения);
- определить существенные признаки;
- выделить не существенные признаки;
- 2) определить существенные и несущественные признаки;
- 3) сделать вывод:
- о полном совпадении понятий (если одинаковы все признаки)
- частичном совпадении понятий (если совпадение признаков частичное);
- несовпадении понятий (если нет одинаковых признаков).

Алгоритм обобщения:

- 1) разложить каждое из понятий на существенные признаки;
- 2) определить общие для всех понятий существенные признаки;
- 3) дать (сформулировать) обобщение на основе этих признаков;
- 4) найти (если существует) обобщающее понятие.

Алгоритм свертывания знаний:

- 1) разложить каждое из понятий на существенные признаки;
- определить общие для понятий существенные признаки для всех понятий (родовые признаки) для отдельных групп понятий (видовые признаки);
- 3) дать (сформулировать) обобщение на основе этих признаков;
- 4) найти (если существует) обобщающее понятие;
- 5) определить основные взаимосвязи между понятиями совпадение, включение, соподчинения, противоположность, противоречие;
- б) на основе выделенных взаимосвязей представить данную совокупность в виде схемы, графика, рисунка, таблицы.
 В результате обучения студенты должны иметь опыт как разработки алгоритма применения знаний, так и способности его

в результате ооучения студенты должны иметь опыт как разраоотки алгоритма применения знании, так и спосооности его применения при выполнении заданий по курсу теории.

В педагогике различают несколько моделей обучения:

- 1. Пассивная обучаемый выступает в роли «объекта» обучения (слушает и смотрит);
- 2. Активная обучаемый выступает «субъектом» обучения (самостоятельная работа, творческие задания);
- 3. Интерактивная взаимодействие. Использование интерактивной модели обучения предусматривают моделирование жизненных ситуаций, использование ролевых игр, совместное решение проблем. Исключается доминирование какого-либо участника учебного процесса или какой-либо идеи. Из объекта воздействия студент становится субъектом взаимодействия, он сам активно участвует в процессе обучения, следуя своим индивидуальным маршрутом. Интерактивные формы обучения: * Деловые и ролевые игры;
- * Психологические и иные тренинги;
- * Групповая, научная дискуссия, диспут;
- * Дебаты;
- * Кейс-метод;
- * Метод проектов;
- * Мозговой штурм;
- * Портфолио;
- * Семинар в диалоговом режиме (семинар диалог);
- Разбор конкретных ситуаций;
- * Метод работы в малых группах (результат работы студенческих исследовательских групп);
- * Круглые столы;
- * Вузовские, межвузовские видео телеконференции;
- * Проведение форумов;
- * Компьютерные симуляции;
- * Компьютерное моделирование и практический анализ результатов;
- * Презентации на основе современных мультимедийных средств;
- * Интерактивные лекции;
- * Лекция пресс-конференция;
- * Бинарная лекция (лекция вдвоем);
- * Лекция с заранее запланированными ошибками;
- * Проблемная лекция.
- В процессе преподавания дисциплины «Математика» применяются следующие интерактивные формы обучения:
- 1. Лекция с заранее запланированными ошибками позволяет развить у обучаемых умение оперативно анализировать профессиональные ситуации, выступать в роли экспертов, оппонентов, рецензентов, выделять неверную и неточную информацию.
- 2. Работа в малых группах это одна из самых популярных стратегий, так как она дает всем обучающимся возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия).

АКТИВНЫЕ И ИНТЕРАКТИВНЫЕ ФОРМЫ И МЕТОДЫ ОБУЧЕНИЯ

Одним из дидактических средств, обладающих значительным развивающим потенциалом, является мультимедиа, позволяющая использовать текст, графику, видео и мультипликацию в режиме диалога, что расширяет области применения компьютера в учебном процессе. Появляется возможность совмещать теоретический и демонстрационный

материалы. Тестовые задания уже не ограничиваются словесной формулировкой, но и могут представлять собой целый видеосюжет.

В образовательном процессе активно применяются мультимедийные технологии как средства при проведении различного типа занятий. В процессе чтения лекций применяются презентации, содержащие различные виды информации: текстовую, звуковую, графическую, анимации. Большую популярность приобрели электронные учебники, где представлен достаточно широкий арсенал мультимедийных средств, что не идет в сравнение с использованием обычных «бумажных» учебников. Кроме того, электронный учебник является одним из инструментов самостоятельной подготовки обучаемого по предмету. Мультимедийные технологии должны соответствовать целям и задачам курса обучения и органически вписываться в учебный процесс.

Использование информационных технологий на занятиях по математике стимулирует познавательную активность студентов, облегчает восприятие новой информации, делает более успешным запоминание материала, основанного на динамичных зрительных образах, развивает пространственное воображение и умение логически мыслить.

Метод - это сочетание способов и форм обучения, направленных на достижение определенной цели обучения.

Активные методы

Активные методы - это способы активизации учебно-познавательной деятельности студентов, которые побуждают их к активной мыслительной и практической деятельности в процессе овладения материалом, когда активен не только преподаватель, но активны и студенты.

Активные методы обучения позволяют решить три учебно-организационные задачи:

- 1) подчинить процесс обучения управляющему воздействию преподавателя;
- 2) обеспечить активное участие в учебной работе как подготовленных студентов, так и не подготовленных;
- 3) установить непрерывный контроль за процессом усвоения учебного материала.

Активные методы: неимитационные, имитационные (классификация А.М. Смолкина):

Неимитационные:

- 1) проблемная лекция, лекция вдвоём, лекция с заранее запланированными ошибками, лекция пресс-конференция; 2) эвристическая беседа; 3) поисковая лабораторная работа студента; 4) учебная дискуссия;
- 5) самостоятельная работа с литературой; 6) семинары;

Имитационные: игровые, неигровые.

Игровые: 1) деловая игра; 2) педагогические ситуации; 3)педагогические задачи; 4) ситуация инсценирования различной деятельности.

Неигровые: 1) коллективная мыслительная деятельность; 2) ТРИЗ работа.

Методы активного обучения могут использоваться на различных этапах учебного процесса

- 1 этап первичное овладение знаниями. Это могут быть проблемная лекция, эвристическая беседа, учебная дискуссия и т.д. 2 этап контроль знаний (закрепление), могут быть использованы такие методы как коллективная мыслительная деятельность, тестирование и т.д.
- 3 этап формирование профессиональных умений, навыков на основе знаний и развитие творческих способностей, возможно использование моделированного обучения, игровые и неигровые методы.

Интерактивные методы

Интерактивное обучение построенно на взаимодействии всех обучающихся, включая педагога. Эти методы наиболее соответствуют личностно ориентированному подходу, так как они предполагают коллективное, обучение в сотрудничестве, причем и обучающийся и педагог являются субъектами учебного процесса. Педагог чаще выступает лишь в роли организатора процесса обучения, лидера группы, создателя условий для инициативы учащихся. Интерактивное обучение основано на прямом взаимодействии учащихся со своим опытом и опытом своих друзей, так как большинство интерактивных упражнений обращается к опыту самого учащегося, причем не только учебному. Новое знание, умение формируется на основе такого опыта.

Классификация интерактивных методов обучения

- 1. Творческие задания,
- 2. Работа в малых группах,
- 3. Обучающие игры:
- 1) ролевые, 2) деловые, 3) образовательные,
- 4. Использование общественных ресурсов
- 1) приглашение специалиста, 2) экскурсии,
- 5. Социальные проекты: 1) соревнования, 2)выставки, спектакли и т.д.
- 6. Разминки (различного рода),
- 7. Изучение и закрепление нового информационного материала:
- 1) интерактивная лекция,
- 2) ученик в роли учителя,
- 3) работа с наглядным посо-бием,
- 4) каждый учит каждого,
- 5) использование и анализ видео-, аудио-материалов, 6) практическая задача, 7) кейс-метод; 8) разбор ситуаций

практики участника,

- 8. Работа с документами: 1) составление документов, 2) письменная работа по обоснованию своей позиции,
- 9. Обсуждение сложных и дискуссионных проблем
- 10. Тестирование, экзамен с последующим анализом результатом

В практике преподавания дисциплин математического цикла применяются интерактивные формы обучения, которые обеспечивают педагогическое взаимодействие преподавателя и студентов.

Для решения воспитательных и учебных задач используются следующие интерактивные формы: интерактивная экскурсия; использование кейс - технологий; проведение видеоконференций; круглый стол; мозговой штурм; дебаты; фокус – группа; деловые и ролевые игры; анализ конкретных практических ситуаций; учебные групповые дискуссии; тренинги. Умелое применение методов и приемов активной и интерактивной форм проведения занятий позволяет формировать

Умелое применение методов и приемов активной и интерактивной форм проведения занятий позволяет формировать познавательный интерес обучающихся с целью достижения определенных учебно-воспитательных целей и выполнения образовательных задач.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья:

- 1) учебно-методические материалы для самостоятельной работы предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации;
- 2) для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла;
- 3) для лиц с нарушениями слуха: в печатной форме, в форме электронного документ;
- 4) для лиц с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Примечание: данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Предусматривается обеспечение обучающихся инвалидов и лиц с ограниченными возможностями здоровья печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом заболевания: для студентов с нарушениями слуха информация предоставляется визуально, с нарушениями зрения - аудиально, например, с использованием программ-синтезаторов речи или с помощью тифло-информационных устройств. Для освоения дисциплины используются лекционные аудитории, оснащенные досками для письма, мультимедийное оборудование: проектор, проекционный экран.

Для проведения семинарских (практических) занятий - мультимедийное оборудование: проектор, проекционный экран. Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоровья осуществляется с использованием средств обучения общего и специального назначения: 1)лекционная аудитория: мультимедийное оборудование, источники питания для индивидуальных технических средств; 2)учебная аудитория для практических занятий (семинаров)-мультимедийное оборудование; 3)аудитория для самостоятельной работы: стандартные рабочие места с персональными компьютерами. В каждой аудитории предусмотрено соответствующее количество мест для обучающихся с учетом ограничений их здоровья.

Для обучающихся инвалидов и лиц с ограниченными возможностями здоровья предусмотрено обслуживание по межбиблиотечному абонементу (МБА) с Хабаровской краевой специализированной библиотекой для слепых. По запросу пользователей НТБ инвалидов по зрению, осуществляется информационно-библиотечное обслуживание, доставка и выдача для работы в читальном зале книг в специализированных форматах для слепых.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление подготовки / специальность: Экономическая безопасность

Профиль / специализация: Экономико-правовое обеспечение экономической безопасности

Дисциплина: Математика

Формируемые компетенции: ОПК-1, ОПК-3

1. Описание показателей, критериев и шкал оценивания компетенций.

1.1.Показатели и критерии оценивания компетенций

Объект оценки	Уровни сформированности компетенций	Критерий
		оценивания
		результатов
		обучения
Обучающийся	Низкий уровень	Уровень результатов
	Пороговый уровень	обучения
	Повышенный уровень	не ниже порогового

1.2. Шкалы оценивания компетенций при сдаче экзамена (квалификационного экзамена)

Достигнутый уровень	Характеристика уровня сформированности	Шкала оценивания
результата	компетенций	экзамена
обучения		
	Обучающийся:	
	-обнаружил пробелы в знаниях основного учебно-	
	программного материала;	
II~	-допустил принципиальные ошибки в выполнении заданий,	
Низкий	предусмотренных программой;	Неудовлетворительно
уровень	-не может продолжить обучение или приступить к	
	профессиональной деятельности по окончании программы	
	без дополнительных занятий по соответствующей	
	дисциплине.	
	Обучающийся:	
	-обнаружил знание основного учебно-программного	
	материала в объёме, необходимом для дальнейшей учебной и	
	предстоящей профессиональной деятельности;	
	-справляется с выполнением заданий, предусмотренных	
Пороговый	программой;	Удовлетворительно
уровень	-знаком с основной литературой, рекомендованной рабочей	у довлетворительно
	программой дисциплины;	
	-допустил неточности в ответе на вопросы и при выполнении	
	заданий по учебно-программному материалу, но обладает	
	необходимыми знаниями для их устранения под	
	руководством преподавателя.	
	Обучающийся:	
	- обнаружил полное знание учебно-программного материала;	
	-успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей	
Повышенный	программой дисциплины;	Хорошо
уровень	-показал систематический характер знаний учебно-	Порошо
	программного материала;	
	-способен к самостоятельному пополнению знаний по	
	учебно- программному материалу и обновлению в ходе	
	дальнейшей учебной работы и профессиональной	

	деятельности	
Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие	
	знания учебно-программного материала;	
	-умеет свободно выполнять задания, предусмотренные	
	программой;	
	-ознакомился с дополнительной литературой;	
	-усвоил взаимосвязь основных понятий дисциплин и их	
	значение для приобретения профессии;	
	-проявил творческие способности в понимании учебно-	
	программного материала.	

Описание шкал оценивания

1.3. Компетенции обучающегося оцениваются следующим образом:

Планируемый уровень		Содержание шка достигнутого уровня р		
результатов освоения	Неудовлетворительно Не зачтено	Удовлетворительно Зачтено	Хорошо Зачтено	Отлично Зачтено
Знать	Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся способен самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует способность к самостоятельному применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части междисциплинарных связей.
Уметь	Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.	Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.	Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.
Владеть	Неспособность самостоятельно проявить навык решения поставленной задачи постандартному образцу повторно.	Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей

2.Перечень примерных вопросов к экзамену (ОПК 1, ОПК-3)

1 семестр

- 1. Матрицы, виды матриц, действия над ними, их свойства.
- 2. Обратная матрица. Алгоритм нахождения обратной матрицы.
- 3. Определители I, II и III порядков, правила их вычисления, свойства определителей.
- 4. Минор и алгебраическое дополнение, теорема Лапласа. Вычисление определителей n-го порядка.
- 5. Матричный метод решения систем линейных алгебраических уравнений.
- 6. Метод Крамера решения систем линейных алгебраических уравнений.
- 7. Метод Гаусса решения систем линейных алгебраических уравнений.
- 8. Общее уравнение прямой на плоскости и его исследование в зависимости от коэффициентов.
- 9. Уравнение прямой на плоскости с заданным угловым коэффициентом.
- 10. Уравнения прямой на плоскости, проходящей через данную точку с данным угловым коэффициентом. Уравнение пучка прямых на плоскости.
- 11. Уравнения прямой на плоскости, проходящей через две данных точки.
- 12. Уравнения прямой на плоскости «в отрезках». Расстояние от данной точки до прямой.
- 13. Угол между двумя прямыми на плоскости, заданными уравнениями с угловым коэффициентом.
- 14. Условия параллельности и перпендикулярности двух прямых на плоскости.
- 15. Общее уравнение кривых второго порядка. Каноническое уравнение окружности, анализ его уравнения в зависимости от его параметров.
- 16. Каноническое уравнение эллипса, анализ его уравнения в зависимости от параметров. Эксцентриситет эллипса.
- 17. Каноническое уравнение гиперболы, анализ его уравнения в зависимости от параметров. Эксцентриситет гиперболы.
- 18. Каноническое уравнение параболы. Директриса параболы. Расположение параболы в системе координат в зависимости от параметров.
- 19. Проиводная функции в точке и её геометрический смысл. Касательная к кривой y = f(x) и её уравнение в точке хо. Физический смысл производной.
- 20. Правила дифференцирования функций. Правило дифференцирования сложной функции.
- 21. Дифференциал функции. Свойства дифференциала функции. Инвариантность формы дифференциала. Понятие о дифференциалах высших порядков.
- 22. Правило Лопиталя и его применение.
- 23. Возрастающая и убывающая функция. Необходимое и достаточное условие монотонности функции на промежутке.
- 24. Точки максимума и точки минимума функции. Экстремумы функции. Локальный минимум (максимум) и глобальный минимум (максимум) функции.
- 25. Необходимое условие экстремума функции. Первое и второе достаточное условие экстремума функции. Порядок нахождения экстремума функции.
- 26. Наибольшее и наименьшее значение функции на отрезке.
- 27. Выпуклая и вогнутая функция. Достаточный признак выпуклости функции.
- 28. Необходимое и достаточное условие перегиба графика функции. Порядок исследования функции на выпуклость.
- 29. Асимптоты графика функции. Условие существования вертикальных, горизонтальных и наклонных асимптот функции.
- 30. Первообразная и неопределённый интеграл. Геометрический смысл неопределённого интеграла. Связь между интегрированием и дифференцированием функции.
- 31. Арифметические свойства неопределённого интеграла (правила интегрирования).
- 32. Нахождение неопределённого интеграла методом непосредственного интегрирования, замены переменной и по частям.
- 33. Задача о площади криволинейной трапеции. Понятие предела интегральных сумм. Определение определённого интеграла.
- 34. Условия существования определённого интеграла. Свойства определённого интеграла.
- 35. Формула Ньютона-Лейбница.

- 36. Вычисление определённых интегралов заменой переменной и по частям.
- 37. Геометрические приложения интеграла. Вычисление площадей плоских фигур и объёмов тел вращения.
- 38. Несобственные интегралы.
- 39. Комплексные числа. Комплексная плоскость. Алгебраическая форма записи. Действия над числами, представленными в алгебраической форме.
- 40. Тригонометрическая форма записи комплексного числа. Действия над числами, представленными в комплексной форме.
- 41. Решение дифференциального уравнения, общие и частные решения. Задача Коши. Порядок дифференциального уравнения.
- 42. Дифференциальные уравнения первого порядка. Геометрический смысл решения дифференциального уравнения. Виды дифференциальных уравнений первого порядка.
- 43. Решение дифференциальных уравнений первого порядка с разделёнными и разделяющимися переменными.
- 44. Уравнения второго порядка, допускающие понижение порядка и их решения.
- 45. Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами и их решение. Характеристическое уравнение.
- 46. Случайное событие, испытание. Виды событий (достоверное, невозможное, случайное; совместные, несовместные, равновозможные, полная группа событий).
- 47. Вероятность события. Частота события. Классическое определение вероятности события.
- 48. Свойства вероятности события. Следствия из свойств вероятности события.
- 49. Статистическое определение вероятности события. Применимость её к определённому виду событий. Свойства.
- 50. Формулы комбинаторики: перестановки, размещения, сочетания. Примеры.
- 51. Сложение вероятностей несовместных событий. Сумма вероятностей событий, образующих полную группу. Сумма вероятностей противоположных событий.
- 52. Безусловная и условная вероятность. Вероятность совместного появления двух и более событий.
- 53. Независимые события, попарно независимые, события, независимые в совокупности.
- 54. Вероятность появления двух и более независимых событий. Вероятность появления хотя бы одного события, независимого в совокупности.
- 55. Совместные события. Вероятность появления хотя бы одного из двух совместных событий.
- 56. Формула полной вероятности событий. Вероятность гипотез. Формула Байеса.
- 57. События, независимые относительно события А. Сложные и простые события. Схема Бернулли. Формула Бернулли.
- 58. Случайная величина. Дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины. Бинарное (альтернативное) распределение дискретной случайной величины.
- 59. Биномиальное распределение дискретной случайной величины.
- 60. Распределение Пуассона. Простейший поток событий.
- 61. Математическое ожидание дискретной случайной величины, её свойства и вероятностный смысл.
- 62. Математическое ожидание бинарного, биномиального, пуассоновского и геометрического распределения дискретной случайной величины.
- 63. Дисперсия. Свойства дисперсии. Формулы вычисления дисперсии.
- 64. Среднее квадратичное отклонение. Среднее квадратичное отклонение суммы взаимно независимых случайных величин.
- 65. Закон больших чисел. Неравенство Чебышева. Терема Чебышева. Сущность и значение теоремы Чебышева для практики.
- 66. Непрерывная случайная величина и функция её распределения (определение).
- 67. Свойства функции распределения и следствия из этих свойств.
- 68. График функции распределения и его исследование.
- 69. Плотность распределения вероятностей непрерывной случайной величины (определение, теорема). Свойства плотности распределения.
- 70. Числовые характеристики непрерывных случайных величин и их свойства.

- 71. Нормальное распределение вероятностей непрерывных случайных величин (определение, формулы вычисления, график).
- 72. Экспоненциальное распределение вероятностей непрерывных случайных величин (определение, формулы вычисления, график).
- 73. Числовые характеристики показательного распределения.
- 74. Функция надёжности (определение, формулы вычисления).
- 75. Варианты. Вариационный ряд. Частота и относительная частота количественного признака. Свойства частот. Статистическое распределение выборки.
- 76. Эмпирическая и теоретическая функция распределения. Полигон и гистограмма частот.
- 77. Генеральная средняя и выборочная средняя.
- 78. Генеральная дисперсия и выборочная дисперсия. Исправленная дисперсия.
- 79. Точечные и интервальные оценки. Точность и надёжность оценки. Доверительный интервал с заданной надёжностью.
- 80. Доверительный интервал для оценки математического ожидания при известном среднем квадратическом отклонении. Классическая точность оценки.
- 81. Доверительный интервал для оценки среднего квадратического отклонения нормального распределения.

Образец билета к экзамену. 1 курс.

	ДВГУПС ПримИЖТ	
«Рассмотрено предметнометодической комиссией» «»20_ г. Председатель	Экзаменационный билет № 1 по дисциплине «Математика»	«Утверждаю» Зам. директора по УР
/Шестернина В.В.	для специальности/ направления подготовки	Мелешко Л.А.
1 семестр 20_/20_ уч.г. Экзаменатор доцент Квашко Л.П.	38.05.01 Экономическая безопасность	«»20_ г.
1. Матрицы, виды матриц, дей	ствия над ними, их свойства. ОПК-1,	ОПК-3
2. Угол между векторами и с ОПК-1, ОПК-3	способ его нахождения. Признак пер	опендикулярности векторов.
3. Составить уравнение прямої	й, проходящей через точки $A\ (3;\ 1)$ и E	З (5; 4). ОПК-1, ОПК-3

- 3. Тестовые задания. Оценка по результатам тестирования.
- 3.1. Примерные задания теста (ОПК 1, ОПК-3)

Тест 1

1. Определитель матрицы $A = \begin{pmatrix} 0 & 2 \\ -5 & 2 \end{pmatrix}$ равен:

a) |A| = -10;

б) |A| = 10;

B) |A| = 4;

- Γ) |A| = 0;
- 2. При перестановке двух строк матрицы определитель этой матрицы:
- а) увеличивается на 1;

б) уменьшается на 1;

в) меняет знак;

- г) не меняется;
- **3.** Определитель матрицы $C = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 0 & 4 \\ -2 & -1 & -4 \end{pmatrix}$ равен:
- a) 2;
- б) 4;
- в) -6;
- г) -3;
- **4.** Таблица чисел, состоящая из m строк и n столбцов $(m \neq n)$ матрицы, называется:
- а) квадратной матрицей;
- б) диагональной матрицей;
- в) единичной матрицей;
- г) прямоугольной матрицей.
- 5. По формулам Крамера решить систему уравнений

$$\begin{cases} x_1 + 2x_2 &= -1 \\ -3x_1 &+ x_3 = -2 \\ x_1 + x_2 + x_3 &= 1 \end{cases}$$

В ответе указать значение переменных x_1, x_2 и определителя Δ_3 .

- **6.** Если в квадратной матрице все ее элементы, стоящие ниже и выше главной диагонали равны нулю, а на главной диагонали стоят любые ненулевые числа, то эта матрица называется:
- а) нулевой;

б) единичной;

в) прямоугольной;

- г) диагональной.
- 7. В матрице $A = \begin{pmatrix} 2 & 5 & -8 & 4 \\ 3 & -1 & 0 & 2 \\ 1 & 0 & 0 & 4 \\ 5 & 7 & 6 & -1 \end{pmatrix}$ главную диагональ составляют элементы:

a) 4; 0; 0; 5;

б) 2; -1; 0; -1;

в) 2; 5; -8; 4;

- г) 5; 7; 6; -1;.
- 8. Найти соответствие между утверждениями:
- 1). Если две строки матрицы пропорциональны, то определитель этой матрицы
- а) не изменяется;
- 2). Если матрицу транспонировать, то её определитель
- б) равен нулю;
- 3). При перестановке двух столбцов матрицы её определитель
- в) изменит знак;
- **9.** Связь между минором M_{ii} и алгебраическим дополнением A_{ii} к элементу a_{ii} выражается равенством:
- a) $M_{ij} = A_{ij}$;

 δ) $A_{ii} = \pm M_{ii}$;

- B) $A_{ij} = (-1)^{i-j} M_{ij}$;
- Γ) A _{ij} = $(-1)^{i+j}$ M _{ij};.
- 10. Система трех линейных уравнений с тремя неизвестными х, у, z имеет единственное решение, если:
- а) определитель системы $\Delta = 0$;
- б) определитель системы $\Delta \neq 0$;

B) $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$;

- г) $\Delta \neq 0$ и $\Delta_x \neq 0$ и $\Delta_v \neq 0$ и $\Delta_z \neq 0$.
- Минор M_{13} определителя $\begin{bmatrix} 1 & 2 & 4 \\ -5 & 6 & 1 \\ 0 & 4 & 2 \end{bmatrix}$ равен... 11.
- 12. Разложение определителя
- 1) по первой строке

a) $\Delta = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$;

2) по первому столбцу

 δ) $\Delta = a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33}$;

3) по второй строке

B) $\Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$;

4) по второму столбцу

 Γ) $\Delta = a_{12}A_{12} + a_{21}A_{22} + a_{32}A_{32}$;

5) по третьей строке

6) по третьему столбцу

а) таблица;

- б) число |A| = ad bc;
- в) число |A| = b ad;
- Γ) число |A| = a bd;

14. Если минор $M_{12} = 4$, то соответствующее алгебраическое дополнение $A_{12} = \dots$

15. Формулы Крамера для решения системы двух линейных уравнений с двумя неизвестными х и у имеют вид:

a) $x = \Delta x$; $y = \Delta y$;

6) $x = \frac{\Delta x}{\Lambda}$; $x = \frac{\Delta y}{\Lambda}$

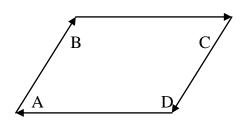
B) $x = \frac{\Delta}{\Delta y}$; $x = \frac{\Delta}{\Delta x}$

B) $x = \frac{\Delta x}{\Delta y}$; $x = \frac{\Delta y}{\Delta x}$

Тест 2

1. Вектором называется:

а) направленный луч;


б) луч;

в) направленный отрезок;

г) прямая.

2. Указать противоположные векторы:

- \overline{AB} и \overline{CD} : 1)
- 2) \overline{BC} и \overline{DA} ; 3) \overline{AB} и \overline{DC} ; 4) \overline{CB} и \overline{AD} .

- а) 1 и 2;
- б) 2 и 3;
- в) 3 и 4;
- г) 1 и 4.

3. Установить соответствие между законами сложения векторов и их формульной записью:

- 1) переместительный
- a) k $(\overline{a}+\overline{b}) = k \overline{a}+k\overline{b}$ b) $\overline{a}+\overline{b} = \overline{b}+\overline{a}$ b) $\overline{a}+\overline{b}+\overline{c} = \overline{a}+(\overline{b}+\overline{c})$
- 2) распределительный

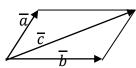
3) сочетательный

4. Скалярное произведение $\overline{a} \cdot \overline{b}$ векторов $\overline{a} = (0; -1; 5)$ и $\overline{b} = (5; 4; -3)$ равно ...

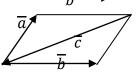
5. Длина вектора $\bar{a} = (\sqrt{8}; 4; 5)$ равна ...

6. Если направления оси и составляющей не совпадают, то:

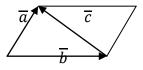
a)
$$\operatorname{\pi p}_{\overline{\ell}} \overline{a} = |\operatorname{coct}_{\ell} \overline{a}|;$$

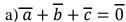

$$δ)πp_{\overline{\ell}} \overline{a} = |coct_{\ell} \overline{a}|;$$

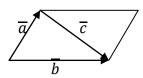
в) пр
$$_{\overline{\ell}} \ \overline{a} = \pm |\text{сост}_{\ell} \ \overline{a}|$$


$$\Gamma) \operatorname{\pip}_{\overline{\ell}} \overline{a} = \pm |\operatorname{coct}_{\ell} \overline{a}|$$

7. Установить соответствие между рисунками и векторными равенствами:


1)





$$6)\overline{a} + \overline{b} - \overline{c} = \overline{0}$$

$$\mathbf{b})\overline{a} - \overline{b} + \overline{c} = \overline{0}$$

4)

г)
$$\overline{a} - \overline{b} - \overline{c} = \overline{0}$$

8. Найти $\overline{a}\overline{b}+\overline{b}\overline{c}+\overline{a}\overline{c}$, где \overline{a} , \overline{b} , \overline{c} - единичные векторы, удовлетворяющие условию

9. Векторы $\overline{a}=m\overline{i}-3\overline{j}+2\overline{k}$ и $\overline{b}=\overline{i}+2\overline{j}-m\overline{k}$ взаимно перпендикулярны при $m = \cdots$

10. Данные векторы $\overline{a} = 3\overline{i} - 6\overline{j} - \overline{k}$, $\overline{b} = \overline{i} + 4\overline{j} + 5\overline{k}$, $c = 3\overline{i} + 4\overline{j} + 2\overline{k}$.

Найти (с точностью до 0,1) проекцию вектора $(\overline{b} + \overline{c})$ на направление вектора $(\overline{a} + \overline{b})$.

11. Если $\overline{a} = (x_1; y_1), \ \overline{b} = (x_2; y_2),$ то условие коллинеарности векторов \overline{a} и \overline{b} :

a)
$$\frac{x_1}{y_1} = \frac{x_2}{y_2}$$

a)
$$\frac{x_1}{y_1} = \frac{x_2}{y_2}$$
 6) $\frac{x_1}{x_2} = \frac{y_2}{y_1}$

B)
$$\frac{x_1}{y_1} = -\frac{x_2}{y_2}$$
 Γ) $\frac{x_1}{x_2} = -\frac{y_1}{y_2}$

$$\Gamma$$
) $\frac{x_1}{x_2} = -\frac{y_1}{y_2}$

12. Если ...

a) 5;

- б) 13;
- в) -1;
- r) 7.

13. Вектор \overline{AB} , где A (3; -4; 2) и В (-3; 2; 1) имеет координаты:

a) (0;-6;1);

- б) (-6;6;-1); в) (0;-2;1);
- г) (6;-6;1).

14.	Внутренний	угол А треу	тольника	ABC E	находят по	формуле:
-	Diff ipelilini.	y1 031 11 1 pc y	1 OJIDIIIIKU		тамодит по	φορμισμο.

a)
$$\cos \angle A = \frac{\overline{AB}}{|\overline{AB}|} \cdot \frac{\overline{AC}}{|\overline{AC}|}$$
;

6)
$$\cos \angle A = \frac{\overline{AB}}{|\overline{AB}|} \cdot \frac{\overline{AC}}{|\overline{CA}|}$$

B)
$$\cos \angle A = \frac{\overline{BA}}{|\overline{BA}|} \cdot \frac{\overline{CA}}{|\overline{CA}|}$$
;

B)
$$\cos \angle A = \frac{\overline{BA}}{|\overline{BA}|} \cdot \frac{\overline{AC}}{|\overline{AC}|}$$

15. Разложение вектора $d = \overline{a} - \overline{b} + \overline{c}$ с векторами \overline{a} и \overline{b} (если $\overline{a} = (3; -1), \overline{b} = (1; -2),$ $\overline{c} = (-1;7)$ имеет вид:

$$\overline{d} = x\overline{\alpha} + y\overline{b}$$
, где $x = ...; y = ...$

Тест 3

- **1.** Найти сумму $(x_0 + y_0)$, где x_0 , y_0 координаты точки пересечения медиан треугольника АВС, где А (2;4), В (-3;0), С (7;-7).
- 2. Найти расстояние между параллельными прямыми: y = -0.75x - 6 и 3x + 4y - 12 = 0.
 - **3.** Нормальный вектор \overline{n} прямой Ax + By + C = 0 имеет координаты:

a)
$$\overline{n} = (A;B);$$

$$δ$$
) \overline{n} = (A;B;C);

$$\mathbf{B})\,\overline{n}=(\mathbf{A};\mathbf{C});$$

$$\Gamma$$
) $\overline{n} = \left(-\frac{A}{B}; \frac{C}{2B}\right)$.

4. Если прямая перпендикулярна оси OX, то ее угловой коэффициент равен:

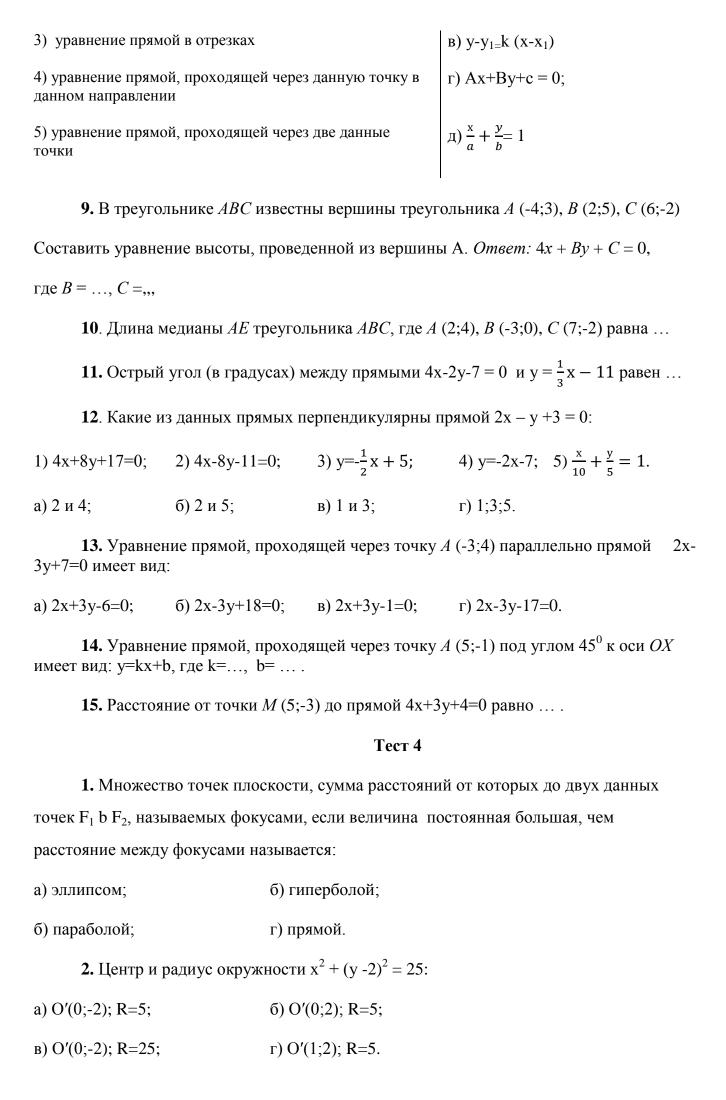
- a) 1;
- б) 90° :
- B) 0:
- L) ∞ .

5. Прямая у = х образует с положительным направлением оси абсцисс угол:

- a) 0^{0} ;
- δ) $\frac{\pi}{4}$;
- B) $\frac{2\pi}{3}$;
- Γ) π .

6. Уравнение с прямой, параллельной оси *OX*, имеет вид:

- a) $y = -\frac{a}{c}x$,


7. Уравнение прямой, проходящей через точки М (1;2) и N (0;3) имеет вид:

- a) y = -x+3;

8. Установите соответствие между уравнениями прямых и их названиями:

1) общее уравнение прямой

- a) $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$ 6) y=kx+b
- 2) уравнение прямой с угловым коэффициентом

3. Фокусы гиперболы
$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

находятся в точках

a)
$$F_{1,2}(\pm \sqrt{a^2 + b^2}; 0);$$

6)
$$F_{1,2}(\pm\sqrt{a^2-b^2};0);$$

B)
$$F_{1,2}(\pm\sqrt{a^2+b^2};0);$$

Γ)
$$F_{1,2}(0;\pm\sqrt{a^2-b^2});$$

 $(\pm\sqrt{a^2+b^2};0);$ г) $F_{1,2}(0;\pm\sqrt{a^2-b^2});$ **4.** Указать параболы, симметричные оси OX: $4x^2;$ 2. $y^2=x-2;$ 3. $y=x^2-2;$

1.
$$y=4x^2$$

2.
$$y^2 = x - 2$$
;

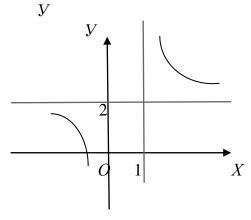
3.
$$y=x^2-2$$
;

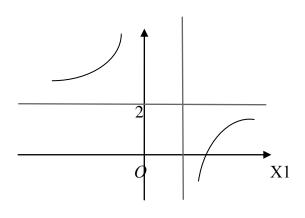
$$4. y^2 = 4x.$$

5. Траектория движения точки М (х;у), которая при своем движении остается вдвое ближе чем к точке В (-4;4), есть:

- а) окружность;
- б) гипербола;
- в) парабола;
- г)) эллипс.

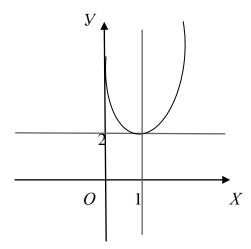
6. Центр эллипса $5x^2+9y^2-30x+18y+9=0$ находится в точке:

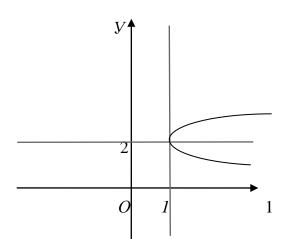

7. Установить соответствие между рисунками и уравнениями кривых:


1)
$$(x-y)^2 = 2(y-2)$$
;

2) y-2=
$$\frac{3}{x-1}$$
;

3) y-2=
$$\frac{-3}{x-1}$$
;


4)
$$(y-2)^2 = 2(x-1)$$
.



a)

X

8. Установить соответствие между эксцентриситетами указанных кривых и формулами:

- 1. для эллипса с фокусами на оси OX
- 2. для эллипса с фокусами на оси OV
- 3. для гиперболы с фокусами на ОХ
- 4. для гиперболы с фокусами на ОУ

5. для параболы

 Γ) $\varepsilon = \frac{\sqrt{a^2 + b^2}}{b};$ д) $\varepsilon = \frac{b}{a^2 - b^2};$

9. Найти значение выражения $\frac{\mathbf{x}_{0}+\mathbf{y}_{0}}{k}$, где $(\mathbf{x}_{0};\,\mathbf{y}_{0})$ – координаты центра, а \mathbf{k} – радиус окружности $\mathbf{x}^{2}-10\mathbf{x}+\mathbf{y}^{2}-8\mathbf{y}+32=0$.

10. Найти разность $(d_2 - d_1)$; где d_1 – расстояние между фокусами эллипса $\frac{y^2}{24} = 1$, d_2 – расстояние между фокусами гиперболы $\frac{x^2}{64} + \frac{y^2}{36} = 1$.

11. Найти расстояние между центром равносторонней гиперболы $y = \frac{12x-5}{4x-8}$ и вершиной параболы $y = -2x^2 + 20x + 43$.

12. Мнимые вершины гиперболы $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ находятся в точке:

- a) $(\pm b;0);$
- $6(0;\pm b);$
- B) $(\pm \alpha; 0);$
- Γ) B) $(0:\pm\alpha)$.

13. Уравнение директрисы для параболы $y^2 = 2px(p>0)$ имеет вид:

14. Сумма $(x_0 + y_0)$ – координаты вершины параболы $(x+5)^2 = 4(y-1)$ равна:

- a) -6;
- б) 4;
- в) -4:
- г) **6**.

15. Кривая второго порядка в общем виде задается уравнением:

- a) $Ax^2+Bxy+Cy^2+Dx+Ey+F=0$;
- б) $Ax^2 + By^2 + Cx + Dy + F = 0$;
- B) $Ax^2 + By^2 + C = 0$;

$$\Gamma$$
) $x^2 + 2xy + y^2 = 0$;

Тест 5

1. Выбрать плоскость, параллельную плоскости x-2z+5 = 0;

a)
$$4x+8z+10=0$$
;

б)
$$2x+z+1=0$$
;

B)
$$2x-4z+5=0$$
;

2. Составить уравнение плоскости, проходящей через начало координат и перпендикулярной прямой $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z}{-3}$;

a)
$$x+2y-3z = 0$$
;

б)
$$x-2y = 0$$
;

B)
$$x+2y+1=0$$
.

3. Найти координаты направляющего вектора прямой

$$\frac{x-3}{0} = \frac{y-4}{2} = \frac{z+5}{-1}$$
:

a)
$$\overline{\ell} = (3,5,-5);$$

6)
$$\overline{\ell} = (0,2,-1);$$

б)
$$\overline{\ell} = (0,2,-1);$$
 в) $\overline{\ell} = (-3,-4,-5);$

4. Укажите координаты центра и радиус сферы $x^2+y^2=z^2-10y+4z+25=0$;

a) C
$$(0,-5,2)$$
, R = 2;

б) C
$$(0,5,-2)$$
, R = 2; в) C $(0,5,-2)$, R = 5.

B) C
$$(0,5,-2)$$
, R = 5.

5. Укажите координаты нормального вектора плоскости 4x-5z = 0;

a)
$$\overline{n} = (4,-5,0);$$

б)
$$\overline{n} = (-4,5,0);$$

B)
$$\overline{n} = (4,0;-5,);$$

6. Напишите уравнение прямой, проходящей через точку А(0;-4;3) и параллельно прямой $\frac{x}{1} = \frac{y-2}{2} = \frac{z+1}{-3}$.

a)
$$\frac{x}{1} = \frac{y+4}{2} = \frac{z-3}{-3}$$
;

$$6) \frac{x}{0} = \frac{y-2}{-4} = \frac{z+1}{3};$$

7. Какая из трех плоскостей проходит через ось OZ:

a)
$$3x + y = 0$$
; 6) $z + 6 = 0$; B) $3x + 2z = 0$?

B)
$$3x + 2z = 0$$
?

8. Укажите взаимное расположение плоскостей 4x-y+5z-3 =x - 6y - 2z + 5 = 0:

а) параллельны, б) перпендикулярны, в) пересекаются (не под прямым углом).

9. Найти точку пересечения прямой $\frac{x}{1} = \frac{y-4}{2} = \frac{z+3}{-3}$. и плоскости x + y - z + 2 = 0:

a)
$$A(4;-5,;1);$$

$$6)A(0;1;-1);$$
 $B)A(1;1;-1).$

$$A(1:1:-1)$$

10. Найти координаты направляющего вектора прямой
$$\begin{cases} 4x + 3y - z = 0 \\ 2y + z + 4 = 0 \end{cases}$$

a)
$$\overline{i} = (0; 6; -1);$$
 6) $\overline{i} = (5; -4; 8);$ B) $\overline{i} = (4; 3; -1).$

11. Найти соответствие между утверждениями относительно двух плоскостей

$$A_1x + B_1y + C_1\mathbf{Z} + D_1 = 0$$
 (1), $A_2x + B_2y + C_2z + D_2 = 0$ (2), прямой $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ и их признаками:

4) плоскость (1) и прямая перпендикулярны.
$$\Gamma = \frac{A_1}{m} = \frac{B_1}{n} = \frac{C_1}{n}$$
;

a)
$$A_1A_2+B_1B_2+C_1C_2=0$$
;

$$\delta) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$
;

$$5) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2};$$

B)
$$A_1m+B_1n+C_1p=0$$
;

$$\Gamma\left(\frac{A_1}{m} = \frac{B_1}{n} = \frac{C_1}{p}\right)$$

12. Даны нормальные векторы соответственно плоскостей α и β : $\overline{n}_a=(A_1;B_1;C_1), \quad \overline{n}_\beta=(A_2;B_2;C_2),$ и направляющие векторы прямых α и b: $\overline{S}_\alpha=(m_1;n_1;p_1),$ $\overline{S}_b = (m_2; n_2; p_2)$. Найти соответствие между утверждениями и их признаками:

- 1. плоскость α параллельна плоскости β ($\alpha | | \beta$)
- 2. плоскость α перпендикулярна плоскости β ($\alpha \perp \beta$)
- 3. прямые перпендикулярны ($\alpha \perp b$)
- 4. прямые параллельны ($\alpha || b$)
- 5. прямая β параллельна плоскости α (b|| α)
- 6. прямая ℓ параллельна плоскости β (b|| β)
- 7. $a||\alpha|$
- 8. b⊥β
- 9. a⊥α
- 10. a⊥ß
- 11. b⊥α

a)
$$\overline{S}_a \perp \overline{S}_b$$

- б) $\overline{n}_a || \overline{n}_{\beta}$
- в) $\overline{n}_a \perp \overline{S}_a$
- Γ) $\overline{n}_a \perp \overline{S}_b$
- д) $\overline{S}_a || \overline{n}_a$
- ж) $\overline{S}_a||\overline{n}_{\beta}$
- 3) $\overline{n}_a \perp \overline{n}_B$
- и) $\overline{S}_h || \overline{n}_B$
- $κ) \overline{n}_a || \overline{S}_B$
- л) $\overline{n}_{\beta} \perp \overline{S}_{\scriptscriptstyle \rm B}$
- M) $\overline{S}_a | | \overline{S}_b$
- **13.** Уравнение плоскости, проходящей через точку M_0 (2;3;-1) параллельно плоскости 4x-2y+5z-3=0 имеет вид:

$$4x + By + Cz + D = 0$$
, где $B = ..., C = ..., D = ...$

14. Прямые $\begin{cases} x+y-z+4=0; \\ 2x-3y-z-5=0; \end{cases}$ и $\frac{x+3}{4}=\frac{y+3}{1}=\frac{z-1}{2}$ пересекаются в точке (x_0,y_0,z_0) , где $x_0 = ..., y_0 = ..., z_0 =$

15. При пересечении плоскости x+2y-2z+1=0 и x+y-4=0 образуют смежные углы: $\phi_1=\dots$ $\phi_2=\pi-\phi_1=\dots$

Тест 6

1. Установить соответствие

- 1) Четная функция y=f(x);
- 2) Нечетная функция y=f(x);

- a) f(-x) = -f(x);
- b) f(-x) = f(x);

2. Установить соответствие

- 1) Функция f(x) возрастает;
- 2) Функция f(x) убывает;

- a) $x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$.
- b) $x_1 < x_2 \iff f(x_1) > f(x_2)$.

3. Функция f(x) называется периодической с периодом T, если

a)
$$f(x+T) = f(x)$$
;

b)
$$f(x+T) = f(x) + T$$
.

4. Установить соответствие

- 1) Явная функция;
- 2) Сложная (вложенная) функция;

- a) y=f(x);
- b) $y=f(u), u=\varphi(x)$).

5. Установить соответствие

- 1) Предел функции слева;
- 2) Предел функции справа;

- a) $\lim_{x \to x_0 0} f(x) = f(x_0 0)$
- b) $\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$

6. Установить соответствие

- 1) Функция f(x) называется бесконечно малой при $x \rightarrow x_0$;
- 2) Функция f(x) называется бесконечно большой при $x \to x_0$;

a)
$$f(x) \rightarrow \infty$$
 при $x \rightarrow x_0$;

b)
$$f(x) \rightarrow 0$$
 при $x \rightarrow x_0$.

7. Установить соответствие

- 1) Первый замечательный предел;
- 2) Второй замечательный предел;

a)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
;

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \mathbf{e}$$

8. Установить соответствие

1) Метод замены переменной для неопределенного интеграла;

2) Формула интегрирования по частям для неопределенного интеграла.

a)
$$\int u \, dv = uv - \int v \, du$$
;

b)
$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt$$

9. Геометрический смысл определенного интеграла

а) $\int_a^b f(x)dx$ численно равен площади S под кривой y = f(x);

b)
$$\int_a^b f(x)dx = F(b)-F(a)$$
, right $F'(x) = f(x)$.

10. Установить соответствие

1) Метод замены переменной для определенного интеграла;

2) Формула интегрирования по частям для определенного интеграла.

a)
$$\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du$$

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt, \quad a = \varphi(\alpha), b = \varphi(b)$$

Найти общее решение уравнения

1.
$$y' = 1/\sqrt{1-x^2}$$
;

a)
$$y = 2arcSinx + C$$
; b) $y = arctgx + C$; c) $y = arcSin + C$; d) $y = \frac{1}{2}arccosx + C$
Other:

2.
$$y' = \overline{(5+3y)^2}$$
;

a)
$$\frac{-1}{3(5+3y)} = x + C$$
; b) $\frac{2}{5(x+y)} = y + C$; c) $\frac{x}{3(5+3y)} = y + C$; d) $3x(y+3x) = x + C$.

$$xy' = 2y;$$

a)
$$y = x^3 + C$$
; b) $y = Cx^2$; c) $y = x^2 + x + C$; d) $y + Cx^3$.

Ответ: ______.

4.
$$y^2 \overline{y' + x^2} = 1;$$

a)
$$y^3 + x^3 - 3x = C$$
; b) $3y^2 + x^2 - 3 = C$; c) $y/x - 3y + C = 0$; d) $y^2 + x^2 - 2x + C = 0$.

$$y' = \frac{1}{x+3y};$$

a)
$$y = 2\ln|x+3y| + C$$
; b) $y = \frac{1}{3}\ln|x^2+3y| + C$; c) $y = \frac{C}{\ln|x+3y+3|}$; d)

 $y = \ln|x + 3y + 3| + C$

Ответ:

$$y' = \frac{y}{x} + \frac{x}{y};$$

a)
$$x^2 = \frac{C}{\ln|x|}$$
; b) $\frac{y}{x} = x^2 + 3y + C$; c) $y^2 = 2x^2(\ln|x| + C)$; d) $x = \frac{y^2}{\ln|x + 2|} + C$

$$7. \quad y^2 dx + x^2 dy = xy dy,$$

a)
$$e^{y/x} = Cy$$
; b) $y = e^{\frac{x}{y}} + C$; c) $e^{y/x} = Cx$; d) $x = e^{\frac{-x}{y}} + C$

$$y' = 3\frac{y}{x} + x;$$

a)
$$3x^2 - 4 = 5y^2$$
; b) $2y + x^2 = Cy$; c) $y = -x^2 + Cx^3$; d) $2y^2 + 3x = C$

 $y' + 2xy = xe^{-x^2}$:

a)
$$e^{x^2} = x^2 + Cy$$
; b) $y = e^{-x^2} \cdot \left(C + \frac{x^2}{2}\right)$; c) $y = \left(2x^2 + C\right) \cdot e^x$; d) $x = e^{-x^2} \cdot \left(C + \frac{x^3}{3}\right)$

Тест 7

1. Установить соответствие

1) Классическое определение вероятности события C;

- 2) Статистическое определение вероятности события C;
- 3) Геометрическое определение вероятности события (попадание пятна на бильярдный стол):
- $P(C) = \frac{числоэкспериме$ **т** $ов, в которыхнаступил<math>\alpha$ обытиеCобщеечислоп экспериме**т**ов
- площадьбильярдное стола b)
 - $P(C) = \frac{числоисходов при которых реализуеты событие C}{}$ общеечислоисходов

2. Указать правильные свойства вероятности

1) Вероятность события – безразмерная величина, удовлетворяющая неравенству $-1 \le P(C) \le 1$;

ŕ	Вероятность достоверного события, т.е. события, которое в результате эксперимента обязательно произойдет, равна нулю; Вероятность невозможного события равна минус единице;
	Сумма вероятностей взаимно противоположных событий C и \overline{C} равна единице: $P(C) + P(\overline{C}) = 1$.
3.	Установить соответствие
1)	Если A,B — независимые события, то вероятность $P(AB)$ равна;
2)	Если A,B – несовместные события, то a) 0;
3)	вероятность $P(AB)$ равна; b) $P(A) + P(B)$; Если A,B — несовместные события, то c) $P(A) \cdot P(B)$.
	вероятность $P(A+B)$ равна;
4.	Вероятность успешно сдать экзамен студентом равна P . Указать невозможные ответы: a) $P = 0.9$; b) $P = 70\%$; c) $P = 1.5$; d) $P = 0.6$.
5.	Пусть $P(A) = 0.6$. \overline{A} – противоположное событие. Указать правильный ответ: a) $P(\overline{A}) = 0.6 + 0.4$; b) $P(\overline{A}) = 1 - 0.6$; c) $P(\overline{A}) = 0.6 \times 0.6$; d) $P(\overline{A}) = 1 - (1 - 0.6)$.
6.	Установить соответствие
1)	Число перестановок из n элементов равно; $C_n^k = \frac{n!}{k!(n-k)!}$.
2)	Число сочетаний из n элементов по k b) $P_n = n!$
7.	Установить соответствие
1)	Закон распределения дискретной случайной величины; а) $F'(x)$;
2)	Функция распределения $F(x)$ b) Набор всех возможных значений случайной непрерывной случайной величины X ; величины x_1, \dots, x_n и соответствующих им
3)	Плотность распределения $f(x)$ вероятностей $p_1,,p_n$; непрерывной случайной величины X ; с) $P(X < x)$.
8.	Математическое ожидание дискретной случайной величины рассчитывается по формуле 1) $M(X) = x_1 p_1 + p_2 x_2$; 2) $M(X) = x_1 q + q^2 x_2$; 3) $M(X) = x_1 q^2 + x_2 (1 - q)^2$.
9.	Указать неправильное свойство математического ожидания для дискретной случайной: 1) $M(CX) = C^2$; 2) $M(X + Y) = M(X) + M(Y)$; 3) $M(XY) = M(X)M(Y)$.
10.	. Указать правильное свойство дисперсии: 1) D $(X + c) = D(X) + c;$ 2) D $(X - Y) = D(X) + D(Y);$ 3) D $(cX) = cD(X).$
11.	. Установить соответствие для непрерывной случайной величины X
1)	Вероятность попадания значения непрерывной случайной величины X в
	$_{ m OTpe3ok} \ [a;b];$ Математическое ожидание;
	Среднее квадратическое отклонение; Дисперсия. $M(Y) = \int_{-\infty}^{+\infty} rf(x) dx$
4)	Дисперсия. $M(X) = \int_{-\infty}^{\infty} x f(x) dx$ a) ;

$P(-\infty < X < +\infty) = \int_{-\infty}^{+\infty} f(x) dx = 1$ b) ; ; ; $\sigma(X) = \sqrt{D(X)}$; ; $D(X) = \int_{-\infty}^{+\infty} (x - M(X))^2 f(x) dx$ d) ; 27. Какую формулу для расчета вероятности след события в каждом испытании мала, а число испыта) формулу сложения вероятности; b) формулу полной вероятности; b) формулу полной вероятности; 28. К какому закону распределения приводит дей их вероятность очень мала? а) к геометрическому распределению; b) к нормальному распределению; c) к распределению Пуассона; d) к экспоненциальному распределению.	аний велико? с) формулу Бернулли; d) формулу Пуассона.
Tec (дробные ответы приводить в	
1. Чему равна вероятность достоверного события? а) 0,25; b) 1,0; Ответ:	c) 0; d) 0,1.
2. Какова вероятность выпадения «орла» один раз, а) 0,1; b) 0,2; Ответ:	, если монета подброшена два раза? c) 0,5; d) 1,0.
3. Какова относительная частота появления «орл выпал 12 раз?	
а) 0,12; b) 0,2; Ответ:	c) 0,6; d) 1,0.
4. Чему равна вероятность суммы двух противопол а) 0; b) 0,25;	ложных событий? с) 0,5; d) 1,0.
5. Предприниматель получает факсы от трех фирм фирмы A, равна 0.5, от фирмы B - 0.3. Какова веро а) 0,15; b) 0,2; Ответ:	
6. Чему равна вероятность выигрыша хотя беравносильного противника? а) 0,25;	c) 0,75;
b) 0,5; Ответ:	d) 1,0.

7. Какую формулу для расчета вероятности след события в каждом испытании мала, а число испы	ует использовать, если вероятность поступления таний велико?
а) формулу сложения вероятности; b) формулу полной вероятности;	c) формулу Бернулли; d) формулу Пуассона.
Ответ:	
8. К какому закону распределения приводит случайных величин?	совокупное действие большого числа малых
а) к геометрическому распределению;	с) к распределению Пуассона;
b) к нормальному распределению;	d) к экспоненциальному распределению.
Ответ:	

3.2. Соответствие между бальной и рейтинговой системами оценивания знаний, умений, навыков и (или) опыта деятельности, устанавливается посредством следующей таблицы:

		*	-
Объект оценки	Показатели оценивания результатов обучения	Оценка	Уровень результатов обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	мися 84 – 75 баллов «Хорог		Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4.Оценка ответа обучающего на вопросы экзамена (квалификационного экзамена)

		Содержание шкаль	і оценивания	
Элементы оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам	Значительные погрешности	Незначительные погрешности	Полное соответствие
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию	Незначительное несоответствие критерию	Соответствие критерию при ответе на все вопросы.
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать вопросы теории и практики проявляется редко	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер

Качество ответов на дополнительные вопросы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	1. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя.	Даны верные ответы на все дополнительные вопросы преподавателя.	
--	---	---	--	---	--